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AbshcL We present a numerical study of localization properties on models for amor- 
phous solids in three dimensions. Tight-binding Hamiltonians that are based on the 
diamond structure are used lo describe the electronic structure of amorphous modifica- 
tions of carbon, silicon and germanium. The localization behaviour of elecmnic slates is 
calculated by studying the sensitivity of eigenvalues to a hange in boundary mnditions. 
A wide specmm of localization etfecb can be okwed, including electron localization 
both at the band edges and weak localization within the bands. The' origin of electron 
localization is discussed using a population analpis of eigenfunnions 

1. Introduction 

In the study of covalently bonded amorphous semiconductors, continuous random 
networks (CRNs) are a widely used model for constructing the geometry of these 
systems. In a CRN, all atoms retain their normal coordination number 2 = 4, 
and deviations from crystalline bond lengths and bond angles are small (Polk 1971). 
However, the translational invariance of the perfect lattice is destroyed and disorder 
is introduced. From a fundamental theorem of Anderson (1958), all eigenfunctions 
of a disordered system become localized if the strength of the disorder exceeds some 
critical value. For a given disorder smaller than this critical wlue, the density of States 
can be divided into a part where all states are localized and another part containing 
extended states, separated by a mobility edge E, (Ziman 1969, Mott and Davis 
1971). As charge transport starting from a localized state can only be performed by 
phonon-assisted hopping or by exciting an electron into the part of the spectrum that 
contains extended states, the conductivity of the system can be affected drastically by 
electron localization. Thus, in addition to the howledge of the density of states, the 
localization behaviour of eigenfunctions is of particular interest in the study of any 
disordered system. 

The electronic structure of CRNs modelling amorphous silicon has attracted con- 
siderable interest in recent numerical work. ?ko different types of CRNS have been 
used by Nichols and Winer (1988) to calculate the localization behaviour of band- 
edge states in amorphous silicon. Biswas et a1 (1989) have studied the density of 
states of both a perfect CRN and a CRN including dangling bonds. The local density 
of states of certain defects in amorphous silicon (a-Si) has been obtained by Agrawal 
et a1 (1990) on a Bethe lattice. All of these calculations are based on a tight-binding 
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Hamiltonian; the wavefunctions are constructed as linear combinations of atomic or- 
bitals. Using the Bloch functions of the crystal as basis functions Hickey and Morgan 
(1486) obtained the density of states and a measure of the broadening of functions 
in k-space, related to the lifetime of Bloch functions in an amorphous system. 

The calculations presented in this article are an application of the approach 
developed by the present authors (Koslowski and von Niessen 1992) to calculate the 
localization properties of eigenfunctions of CRNS in two dimensions. The role of the 
presence of odd-membered rings and bond-angle disorder will be studied using a 
nearest-neighbour tight-binding Hamiltonian including s- and p-type orbitals as basis 
functions. The influence of bond-length variation will be. studied by a I/r2-scaling of 
the Hamiltonian matrix elements. All CRNS are relaxed by a Monte Carlo method. 
The construction of the network, the Hamiltonian parameters and the way localization 
properties are calculated will be presented in the next section. Results are presented 
and discussed in section 3. A detailed study of localization properties, depending on 
atomic number, parametrization and the degree of disorder will be given there. The 
origin of localization will be analysed using an orbital population analysis. Conclusions 
are derived in the last section. 

Ih Kmlowsla' and W von Niessen 

2. Methods 

Out of the numerous ways to construct a CRN based on the diamond lattice, we have 
chosen the vacancy model of Dum er af (1974). It provides a fast computational 
generation, the use of cyclic boundaly conditions and the absence of dangling bonds. 
Excluding hand-built models, these requirements may also be fulfilled by the models 
of Henderson and Herman (1972), Connel and Temkin (1974) or the W3 model 
(Wwten ef ul 1985). The vacancy model has been chosen because it provides a simple 
measure for the degree of disorder introduced m the system. Geometries arising 
from a moleculardynamics simulation (siswas ef ul 1987) include three- and five- 
coordinated silicon atoms and thus do not represent a CRN. Details of the construction 
of a CRN by a vacancy model are given by DutTy er a1 (1974). As in the CRN 
construction on the square lattice (Koslowski and von Niessen 1992), double bonds 
are avoided by restricting the elimination of atoms to four out of eight atoms in 

There are three possibilities to create two new bonds connecting the four atoms 
around each vacancy, which are chosen at random with equal probability. In addition 
to the six-membered rings present in the diamond lattice, five-membered rings are 
created on a m ~ .  The degree of disorder introduced to the network is measured 
by the vacancy concentration p. In our notation, p is normalized to the number of 
all possible vacancies, Le. half of the amms. lb get the actual vacancy concentration 
referring to all atoms, p has to be divided by two. 

The large distortions in bond lengths and bond angles generated by the vacancy 
model have to be removed by the relaxation of the lattice. For this relaxation, the 
Keating potential 

an elementary cell. Their positions are (i, f ,  i), (i, z ,  i), ( f ,  $, $) and (;, 3 1 3  ;, ?). 

is used (Keating 1966). Rij  is the distance vector between two neighbour atoms. The 
second sum spans all distinct pairs of neighbours of i. The first term in equation (1) 
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corresponds to an atom-atom interaction, the second term describes a bond-bond 
interaction. Fbr Si and Ge, the Keating parameters give a l p  = 3.5. For carbon, the 
ratio a / P  is 1.5, so bond-bond interactions become more important there. Whereas 
pair distribution functions similar to those of CRNs can be observed for amorphous 
films of Si and Ge, amorphous carbon is believed to be polycrystalline. Anyway, a 
comparison of the localization properties of carbon with those of silicon and germa- 
nium is interesting, because the Muence of a different geometry and different sets of 
tight-binding parameters can be studied. A Monte Carlo method is used to look for 
the potential energy minimum. For a system containing n atoms, 2n Monte Carlo 
steps have been performed. On average, the attempt to move an atom is made once 
for every Monte Carlo step. The maximum displacement in each direction has been 
set to R,/10, the attempt to move an atom bas only been put into effect if it has 
caused a decrease in energy. 

A simple nearest-neighbour tight-binding Hamiltonian 

ia 

is used to calculate the electronic structure of the CRN. ti, and E:, are annihilation 
and creation operators operating on the space of wlence atomic orbitals localized at 
sites i. 'lb make a distinction between the four different types of orbitals attached 
to each atom, the indices a and 6 have been introduced. The complete set of 
atomic orbitals is assumed to be orthonormal. For all elements mentioned above, the 
parameters of Chadi and &hen (1975) have been used. No dependence of y.ajb 
on the interatomic distance has been imposed here. In addition to the presence of 
odd-membered rings, the variation of bond angles causes disorder in the direction 
cosines, leading to disorder in the offdiagonal matrix elements. For carbon and 
silicon, matrix element scaling of the type 

in addition to the other calculations has been used. This scaling is due to Harrison 
(WO), whose parameter sets have been used. All energies are given in eV; as the 
zero of energy the valence orbital ionization potential ea of the corresponding s orbital 
has been chosen. 

'Ib study the localization properties of the elements in their amorphous modi- 
fication, we use the method of Thouless, Edwards and Licciardello (Edwards and 
Thouless 1972, Licciardello and Thouless 1975, 1978). abbreviated to EL, in com- 
bination with a scaling principle. The authors mentioned above were able to show 
that the energy shift A E  caused by a change in boundary conditions is related to the 
conductance of a system with length L by 

(4) 

6E is the average spacing of the energy levels. In practice, A E  and 6 E  are aver- 
ages within an energy interval. Due to its large fluctuations, A E  is usually taken 
as a geometric mean. In the original EL work, boundary conditions have been 
changed from cyclic to anticyclic ones. 'R, avoid eigenvalue crossings, which usually 
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lead to difficulties in the analysis of data within the kamework of the TEL method, 
the weak decoupling mL scheme (Koslowski and von Niessen 1992) is used in this 
work For each realization, eigenvalues are calculated for cyclic boundary condi- 
tions and modified cyclic boundary conditions in one direction. For modified cyclic 
boundary conditions, matrix elements that mnnect atomic orbitals on opposite lattice 
sides are multiplied by a factor 0.99. The Thouless number g( L )  = AE( L ) / 6 E ( L )  
obtained this way differs Gom the number obtained from the strong coupling case 
only by a constant factor, which does not affect the calculation of the localization be- 
haviour. Energy-resolved Thouless numbers are calculated for different system sizes 
L. Whenever g( L )  increases with increasing lattice size, the corresponding eigen- 
states are extended. If g ( L )  decreases with increasing lattice size., the corresponding 
eigenstates are localized. This interpretation is in agreement with the scaling t h e  
ory of localization (Abraham d ul 1979), where the sign of the scaling function 
p = d In g( L)/d In L is used to classify the localization character of eigenfunctions. 
It should be noted that the scaling method used in the present article is independent 
of the existence of a one-parameter scaling function p(g) ,  as postulated in the scaling 
theory of localization. 'lb calculate the eigenvalues of the large sparse matrices aris- 
ing Gom equation (2), a Lannos algorithm (Lanczos 1950, Cullum and Willoughby 
1985) has been used. The main advantage of the EL approach is that only two sets 
of eigenvalues are required to distinguish localized from extended states. For sparse 
matrices like those arising from the tight-binding approximation (2), the calculation 
of eigenvalues is much cheaper than the calculation of eigenvectors, considering both 
computer time and storage. For the population analysis presented in the third section, 
eigenvectors are required. They are computed for a small system, using just a sin- 
gle realization. For the calculation of the scaling behaviour of localization measures 
based on eigenfunctions like the inverse participation ratio p a n  and Bell W O ) ,  
larger systems would have to be studied with a large number of realizations. 

771 Kmbwski and W von Nimen 

3. Results and discussion 

Localization on CRNs using Hamiltonian matrix elements independent of the inter- 
atomic distance has been studied for a-C, a-Si and a-Ge with vacancy concentrations 
of p = 0.1, p = 0.2, p = 0.4 and p = 0.8. In addition, for a-C and a-Si l / r 2 -  
scaling of the matrix elements has been studied at p = 0.05, p = 0.1 and p = 0.2. 
Calculations have been performed on systems with linear dimensions L = 3, L = 4 
and L = 5, where L denotes the length of an elementary cell. An elementary cell 
contains eight atoms or 32 atomic orbitals. For the smallest vacancy concentrations 
( p  = 0.05), eigenvalue problems of dimensions about 3900 (975 atoms) had to be 
solved for L = 5. Referring to all elements and to all degrees of disorder, the 
minimum number of realizations used are 134 (L = 3), 23 (L = 4) and 5 ( L  = 5). 
The maximum number of realizations used are 366 ( L  = 3), 65 (L = 4) and 13 
( L  = 5). Looking at the comparison of radial distribution functions obtained from 
experiments and from the vacancy model puf fy  et al 1974), the best representation 
of the experimental radial distribution function can be obtained around p = 0.06. 

The TEL analysis can be explained with the help of figure I@). The energy interval 
1-10 ey U) ev] has been divided into 64 subintervals. Of these subintervals, 46 show 
a non-zero density of states for all system lengths. Within each subinterval, the 
behaviour of the negative decadic logarithm of the Thouless number, - log,, g, with 
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increasing lattice size is plotted from the left. If -log,, g b increasing with increasing 
kttice size, the corresponding eigenstates are localized and the energy bin is marked 
with an L. In the density of states plot figure l(b), energy intervals containing 
localized states have been shaded. It should be noted that the calculations presented 
in this article are less a m r a t e  than those for two-dimensional CRNS (Koslov.ski and 
von Niessen 1992). In the two-dimensional case, L ranges from 20 to 50 with a step 
size of ten, so a larger length scale has been used to study the scaling behaviour of 
the Thouless number there. A only three system lengths are used to analyse the 
localization behaviour of eigenfunctions in the three-dimensional problem, we have 
refrained from computing any quantitative measure of electron localization like the 
localization length. The localization length L,,, is a measure for the spatial extension 
of a localized eigenfunction. Assuming an exponential behaviour of the conductance 
for localized states 

s ( L )  exP(-L/L,oc) (5) 
the localization length can in principle be computed from a least-squares fit. Although 
the quality of the data b not sufficient to perform such an analysis, a qualitative 
comparison of the strength of localization can be obtained by an inspection of the 
"EL plots. The density of states (DOS) shown in the figures is accumulated from all 
systems, regardless of L. 

Using l/r2-scaling of the Hamiltonian matrix elements, the localization behaviour 
of the eigenfunctions of a-Si is as follows. At p = 0.05 (figure 1). localized eigenfunc- 
tions can be observed in a small interval at the bottom of the conduction band (CB) 
and in a larger interval at the top of the conduction band. Whereas the density of 
states in the localized region at the bottom of the CB is small, localization at the top 
of the CB persists down to an energy showing the largest Dos of the entire spectrum. 
The valence band (vB) shows no localized states at all. The density of states of the 
CB and the VB shows a well-defined structure, including the three well-known peaks 
in the valence band DOS that can be observed in photoelectron spectra of crystalline 
silicon. Photoelectron spectra obtained from films of a-Si are structureless, unlike 
the valence band DOS obtained in our computations. However, phonon broadening 
may hide this structure in experiments. The valence band DOS obtained by Biswas 
et a1 (1987) and Nichols and Winer (1988) shows two peaks. However, both spectra 
have been broadened. In addition to locaiization in the CB, at p = 0.1 (figure 2) 
localization at the top of the VB can be observed. States at the bottom of the CB 
are more localized, Le. have a smaller localization length, and the energy intern1 
showing localized eigenfunctions is larger. At p = 0.2 (figure 3), the band gap at 
the Fermi energy is closed, although the DOS is still small here. No ?EL analysis has 
been performed in the interval showing the smallest DOS at E = 5.5 ey because the 
DOS for the realizations performed at L = 5 was zero. Localization at the top of the 
VB is reduced to a region with a small DOS. The conduction band DOS has become 
structureless, in the valence band DOS the two rightmost peaks have almost merged. 
The most important p in t s  in the analysis performed in this and the following para- 
graphs are collected in table 1. In figures 1 and 2, the Fermi energy is located in the 
band gap. In figure 3, EF is located in the interval around E = 5 eV that shows the 
smallest DOS. 

Let us summarize the results obtained for a-Si without the l/r2-scaling of the 
matrix elements. At p = 0.1, the localization behaviour around EF remains un- 
changed. At the bottom of the VB, localization can be observed. The most striking 
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Figure L 'IEL analysis (a) and densily of stales 
(b) for a-Si, I / r z ~ l i n g ,  vacancy concentration 
p = 0.05. Energy in units d eY 

Figure I TEL analysis (a) and density of States 
(b) [or a-Si, l/?acaling, vacancy mncentration 
p = 0.10. Energy in units of eV. 

Table L A collenion of IoraliLation propenies and Dos fealurcs 
dependent Hamiltonian malrix elements according lo equation (3). 

Wem P Dos Localizalion 1nner.band No of v8 

l/ra denotes P- 

at Ep at Ep localiiation WP peak 
. , , ,  , ." ,,... , . . 

C 0.10 Zem CB CB 3 
020 Zero VB CB 2 
0.40 small ye3 CB 1 
0.80 High no no -~ 

c,ljrz 0.05 Zem w,CB W, CB 2-3 
0.10 Zem VB, CB W, CB 
0.20 Zem VB, CB No - 

Si 0.10 Zem VB, CB CB 2-3 

0.80 High No No - 
Si, I/? 0.05 Zem CB No 3 

0.10 Zem w, CB No 3 
0.20 smau Yes No 2-3 

- 

0.20 Zem VB CB 2 
0.40 Small Yes NO 2 

Ge 0.10 Zem No No 3 

0.40 Ngh No No 2 
0.80 High No No -~ 
0.20 Small Yes No 2-3 

difference to the distance-dependent Hamiltonian can be observed at the top of the 
a. In addition to localization at the band edge, localized eigenfunctions can also 
be observed in the interior of the band, separated from the localized states at the 
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Fire J. WL analysis (a) and density of slates 
(6) far a-Si, l/?-scaling, vacancy concentration 
p = 0.20. Energy m units of eV. 

Figum 4 Tu. analysis (a) and density of States 
(6) for a-C, l/?-scaling, vacancy concentration 
p = 0.10. Energy m units of eV. 

band edge by a region of extended states. This inner-band localization persists up to 
p = 0.2. As this phenomenon is even more pronounced for amorphous carbon, it 
will be illustrated there. At p = 0.2 and p = 0.4, the structure in the conduction 
band DOS has disappeared, the wlence band DOS is smooth and shows two peaks. At 
p = 0.4, the gap at EF has closed and only a small interval at EF shows a localized 
behaviour. The DOS is broad and structureless at p = 0.8, a small valley has replaced 
the gap between the valence and conduction band. Localization can only be observed 
in a small region at the top of the CB and at the bottom of the VB. 

For a-Ge, the localization behaviour and the DOS structure can be described as 
follows. At p = 0.1, localization can be observed at the top of the CB and at the 
bottom of the VB. Inner-band localization occurs in the conduction band, it disappears 
at higher values of p. Although the DOS at EF equals zero, no localization shows up 
there. The gap at EF closes at p = 0.2, the DOS is small there and a small interval 
of localized states exists. The gap is fdled considerably at p = 0.4, until it becomes 
q u a l  to the DOS in the interior of the VB and the CB at p = 0.8. At p = 0.4 and 
p = 0.8, there is no localkation except at the bottom of the VB and at the top OF 
the a. 

For small vacancy concentrations ( p  = 0.05 and p = O . l ) ,  a-C (l/r2scaling) 
shows inner-band localization in the c8 and in the VB in addition to localization at the 
top and bottom of the VB and a. This behaviour is illustrated in figure 4. It should 
be noted that this inner-band localization is much weaker than the localization that 
can be observed at all band edges. As for a S i  (l/r2scaling), electron localization at 
the bottom of the CB is stronger than localization at the top of the VB. At p = 0.2, 
the bands are still separated but the DOS has become featureless in both bands. The 
Fermi energy is located in the gap. 

Using distance-independent Hamiltonian matrix elements for a-C the phe- 
nomenon of weak inner-band localization can only be observed in the conduction 
band up to p = 0.4. As for a-Si with a comparable Hamiltonian, the localization 
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behaviour around EF is somewhat irritating. States are localized at the bottom of 
the CB at p = 0.1, whereas states at the top of the VB are extended. AI p = 0.2, the 
situation is reversed. Unlike their l/r2-scaling counterparts, the E L  data around EF 
are not unambiguous, so the question about the localization behaviour at this energy 
remains unanswered. At p = 0.4, the gap at EF has closed, states within the gap 
are clearly localized. At p = 0.8, the gap has filled up considerably, states in the gap 
have become extended. 

Looking at electron localization around the Rrmi energy for the rdependent 
Hamiltonians, it can be concluded that localization is stronger at the bottom of the 
CB than at the top of the VB. An extreme case can be observed for a-Si at p = 0.05, 
where states at the top of the YB are extended. That states at the bottom of the CB 
are more localized than at the top of the VB has also been observed by Nichols and 
Winer (1988) studying small realizations of three different CRN models (216 atoms, 
one realization and 54 atoms, two realizations). However, they have not been able to 
distinguish localized from extended states. 

I . . , , , , . ... , ,,,..I 

Figure 5. Populalion analysis for a-Si, vacancy 
mncentration p = 0.10, I/?mting. (a) s-type 
charge order, (6) SF bond order and ( E )  ppu bond 
order. Energy in units of eV. 

Figure 6. Population analysis for a-C, vacancy mn- 
centration p = 0.10, 1 /+-scaling. (a) +type 
charge order, (6) ss bond order and (c) ppv bond 
order. Energy in units of eV. Energy intervals mn- 
taining weakly localized slales are marked with an 
L. 

li~ explain the asymmetry in the localization behaviour around EF, we have 
performed a population analysis (MuUiken 1955). For a-Si (p=O.1 ,  l/r2-scaling), the 
charge order resulting from s-type orbitals, i.e. the projection of an eigenfunction onto 
the space of s-type orbitals is plotted in figure 5. In addition, the 5s bond order and 
the pp bond order are given. The charge order 4,” corresponding to the eigenstate 
la) is given by 
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where the summation is restricted to s-type basis functions. The bond orders are 
given by the averages of all 

where i and j are nearest neighbours. i and j are restricted to be either s-type 
or p-type atomic orbitals, depending on the type of bond order to be calculated. A 
factor of minus one has been included in the definition of the p,, bond order, so the 
bond order between bonds of p-type orbitals becomes positive if it is ppo-bonding. 
At the top of the VB, the eigenfunctions of the system are almost p-like, because q, 
is small there. 

'RI interpret the localization phenomena at the band edges, we have to take into 
a m u n t  the following effects. (i) In general, p states are believed to favour localization 
because of their directional properties. (U) From the work of Gibbons ef ai (1988) 
it is known that localization is enhanced by an antibonding character of the states. 
From the population analysis we derive that at the top of the VB the states have ppo- 
bonding character. At the bottom of the CB, on the other hand the eigenfunctions 
consist of s-type and p-type orbitals in a comparable amount. Wis alone would 
suggest a stronger localization at the top of the VB. However, at the bottom of the 
CB states are ss-antibonding and ppu-non-bonding, so localization due to disorder 
should be enhanced. Thus not only the orbital character of eigenfunctions alone, but 
also the character of bonds is important for the origin of electron localization. 

As the inner-band localization is a weak one, its origin cannot be easily deduced. 
The population analysis for a-C (p = 0.1, 1/r2scaling) is plotted in figure 6. For 
energies below the interval containing localized states in the VB, eigenstates are of 
s-type and have a bonding character. For higher energies, ppu-bonding dominates. 
Both effects lead to an effective suppression of weak localization outside the interval 
shaded in figure 4 and indicated again in figure 6. Localized eigenfunctions are non- 
bonding on the average. For these, the orbital character quickly changes from s- 
to p - t y ~ .  A similar change from s- to p-type character can be observed in the a 
interval consisting of localized states. There, eigenfunctions are both ss- and ppu- 
antibonding. For higher energies, the ppu-antibonding character becomes weaker. 
No hints for the origin of the extended behaviour of the eigenfunctions to the left of 
the localized interval in the CB can be obtained from the population analysis. 

4. Conclusions 

We have performed a numerical study of localization properties on continuous random 
networks as models of amorphous carbon, silicon and germanium. The geometry 
of the models is based on the diamond lattice; disorder has been introduced by 
creating vacancies and rearranging bonds. The network has been relaxed by a Monte 
Carlo procedure. Nearest neighbour tight-binding Hamiltonians have been used to 
calculate the electronic Sttucture. Localization properties have been obtained by the 
'EL method. 

Localization properties significantly depend on the degree of disorder, the element 
and the Hamiltonian used. For Hamiltonians with matrix elements depending on 
interatomic distance, localization at the bottom of the conduction band is stronger 
than localization at the top of the valence band for small degrees of disorder. For 
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larger degrees of disorder, the gap at EF closes, the gap states show a transition from 
localized to extended states with further increasing disorder and increasing density 
of states. The phenomenon of weak inner-band localization is observed for several 
models. The origin of localization properties is discussed in the frame of population 
analysis. 

Th Koslowski and W wn Niwen 
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